
 1  if (x > 0)
 2  {
 3      printf("positive\n");
 4  }
 5  else if (x < 0)
 6  {
 7      printf("negative\n");
 8  }
 9  else
10  {
11      printf("zero\n");
12  }
13
14
15  switch (x)
16  {
17      case 1:
18          printf("A\n");
19          break;
20      case 2:
21          printf("B\n");
22          break;
23      default:
24          printf("C\n");
25  }
26
27
28  int y = (x > 3) ? 2 : 1;

Boolean Expressions

Key Terms

• condition
• boolean
   expression
• if statement
• switch statement
• ternary operator 

Overview
Conditions are how programmers can make decisions in programs, by allowing some 
parts of the code to only run under certain circumstances. Conditions will generally 
work by evaluating a boolean expression, which is an expression that will have a value 
of either true or false. Programmers can set conditions such that different code will 
run depending on what the value of the boolean expression is.

Boolean Operators
Boolean operators are used to create boolean expressions that 
evaluate to true or false. Common boolean operators include the 
comparison operators: < (less than), > (greater than), == (equal to), 
<= (less than or equal to), >= (greater than or equal to), and != (not 
equal to). For instance, in line 1 to the left, a is set to true because 
the expression 3 < 5 is true (because 3 is in fact less than 5). In line 
2, b is set to false because the expression 2 >= 8 is not true.

Logical operators can also be used to combine boolean expres-
sions. && is the logical AND operator: it will evaluate to true if both 
expressions on either side of it are true. || is the logical OR oper-
ator: it evaluates to true if at least one of the two expressions on 
either side is true. And !, the logical NOT operator, evaluates to the 
opposite of whatever the expression immediately after it is.

This is CS50.© 2018

Conditions
Conditional branching refers to the idea that different parts of code 
should execute under different circumstances. The most common type 
of conditional is the if statement: where a certain block of code (en-
closed in brackets) will only run if the condition (whatever is in the pa-
rentheses after the word if) evaluates to true.

Optionally, C also allows you to include an else block after an if state-
ment, which defines which code should run if the if condition evaluates 
to false. C will also allow you to include one or multiple else if state-
ment after an if statement, to add additional conditions that could run 
different blocks of code. The if statement to the right (lines 1-12) will 
print "positive\n" if the value of x is greater than 0, "negative\n" if the 
value of x is less than 0, and "zero\n" if the value of x is equal to 0.

C also has other ways of expressing conditionals. The switch statement, 
shown to the right (lines 15-25), takes one variable, and defines what 
code should run based on which case the variable matches. In the exam-
ple at right, if x is equal to 1, "A\n" is printed; if x is equal to 2, "B\n" is 
printed, and in all other cases (the default case), "C\n" is printed. Code 
within cases should end with break so that the program knows to stop 
executing code and go to the end of the switch statement.

The ternary operator is a third type of condition. The ternary operator 
takes an expression, and evaluates to one value if the expression is true, 
and another value if it is false. In the example on line 28, if x > 3, y is set 
to 2, and 1 otherwise.

1  bool a = 3 < 5;
a

true

2  bool b = 2 >= 8;
b

false

3  bool c = a && b;
c

false

4  bool d = a || b;
d

true

5  bool e = !d;
e

false

CS50


