
Operators

Key Terms
• operator
• arithmetic
 operators
• assignment
 operators

Overview
You're probably familiar with operators from math: the + symbol means addition, the
- symbol means subtraction, etc. C also has operators, which you can use to modify
or combine values. In addition to having operators that perform basic mathematical
operations like addition, subtraction, multiplication, and division, C also has operators
that perform other functions: like finding the remainder when dividing, or updating the
value of a variable.

Arithmetic Operators
C's arithmetic operators perform mathematical functions on num-
bers. The + operator adds two numbers, the - operator subtracts
one number from another, the * operator multiplies two num-
bers, and the / symbol divides one number by another. See lines 1
through 4 of the code to the left to see how such operators work.

When working with ints and dividing, it's especially important to
be aware that an int cannot store non-integer values. For instance,
in line 5, we try to store the value of 10 / 3. C sees a division of two
integers, and tries to make the result an integer as well. But since
the "real" value of 10 / 3 isn't a whole number, everything after the
decimal gets cut off (or "truncated") and e is set to just 3. In order
to save the value with the decimal included, we would need to use
floating-point numbers, like float e = 10.0 / 3.0.

C has another operator, %, which is called the modulus operator. The
modulus operator gives us the remainder when the number on the
left of the operator is divided by the number on the right. Line 6
demonstrates the modulus operator: the remainder when dividing
13 by 3 is 1, so the value of f is set to 1.

This is CS50.© 2018

Assignment Operators
C also provides assignment operators, which provide a variety of ways
to update the value of a variable. The standard assignment operator (=)
is demonstrated on line 7: it sets the value of e to be equal to whatever's
on the right side of the equals sign: in this case, the current value of f
added to 1.

The variable you're assigning can also be on the right of the equals sign
itself. On line 8, the value of e is set to the existing value of e plus one.
While e = e + 1 might not make logical sense in algebra, it's valid in C.
Updating the value of a variable based on its existing value is so com-
mon that C has special syntax for it: the operators +=, -=, *=, and /= will
set a variable to its existing value plus, minus, multiplied by, or divided
by some other number.

C also includes special syntax for increasing the value of a variable by
one or decreasing the value of a variable by one, by writing the name of
the variable followed by ++ or --. So a statement like e++ on line 11 takes
the value of e and increases it by 1.

1 int a = 2 + 8;
a

10

2 int b = 10 - 3;
b

7

3 int c = 4 * 7;
c

28

4 int d = 10 / 2;
d

5

5 int e = 10 / 3;
e

3

7 e = f + 1;
e

2

8 e = e + 1;
e

3

9 e += 1;
e

4

10 e *= 7;
e

28

11 e++;
e

29

6 int f = 13 % 3;
f

1

CS50

