
Arrays and Strings

Key Terms

• array
• string
• size
• index
• null-terminator

Overview
Recall that variables are used to store values. Quite frequently, we may want to use
multiple variables to store a sequence of values: like a sequence of 10 test scores, or 50
addresses. For situations like these, C has a data structure called an array: which stores
multiple values of the same type of data. For instance, an array of ints would store
multiple int values back-to-back. The string type that you have been using is really just
an array of chars.

Arrays
Like variables, arrays are declared by first stating the type of the
data to be stored, followed by the name of the array. In brackets
after the name of the array is the size of the array: which defines
how many values the array will hold. For example, line 1 at left de-
clares an array of 5 ints.

You can visualize an array as a sequence of boxes, each one hold-
ing a value, and each one with a numbered index, which is a num-
ber that can be used to access a specific value in an array. In C,
arrays are zero-indexed, meaning that the first item in an array has
index 0, the second item has index 1, etc.

To access a particular value in an array, use the name of the array,
followed by the desired index in brackets. Line 2 at left sets the
value of the first item in the ages array (the one at index 0) to 28.

The value at each array index can be treated like a normal variable.
For example, you can change its value, apply arithmetic or assign-
ment operators to it.

Since each value in an array is referenced by its index number, it's
easy to loop through an array. Lines 7 through 10 define up a for
loop, which iterates through the entire array, and increases each
age value by 1.

This is CS50.© 2018

Strings
In C, a string is represented as an array of char values. Thus, when
we write a line like string s = "CS50";, this information is stored as
an array of chars, with one character at each index. The final index of
a string in C is the null-terminator, represented by '\0'. The null-ter-
minator is the character that tells a string that the string is over, and
that there are no more characters in the string.

10 2 3 4
1 int ages[5];

2 ages[0] = 28;

3 ages[1] = 15;
4 ages[2] = ages[1];
5 ages[3] = ages[1] - 1;
6 ages[4] = 17;

 7 for (int i = 0; i < 5; i++)
 8 {
 9 ages[i] += 1;
 10 }

10

28
2 3 4

1

15
0

28
2

15
3

14
4

17

1

16
0

29
2

16
3

15
4

18

1

'S'
0

'C'
2

'5'
3

'0'
4

'\0'

string s = "CS50";

Since a string is just an array, you can index into the string just like you would index into any other array
in order to access the value of a particular character. For instance, in the example above, indexing into s[0]
would give you the character 'C', the first character in the string "CS50".

This also makes it very easy to use a loop to interate through a string and perform computation on each indi-
vidual character within a string, by first initializing the loop counter to 0, and repeating until the last index of
the string. The function strlen() takes in a string as input, and returns the length of the string as an integer,
which may help in determining how many times the loop should repeat.

CS50

