
Key Terms

• pixel
• hexadecimal
• header
• lossy
• lossless

Overview
From social media to cancer screenings, newspapers to comic books, images are im-
portant in our lives. Images are stored as files, a series of bytes, just like the programs,
word docs, and text files you’re used to writing. Common image file formats include
bitmaps (.bmp), JPGs (.jpg), PNGs (.png), TIFFs (.tiff), and GIFs (.gif).

Bitmaps
Our entire screen is composed of pixels, little dots with programma-
ble color and brightness values. A bitmap describes a pattern of all the
pixel values that make up an image: when our screen’s pixels become
those values, the image will appear. A bitmap takes some number of
bits per pixel (bpp). More bits can be used to create a more detailed
color palette. Back when screens were black and white, just a single bit
was used per pixel, with 0 = black, 1 = white, as shown at left.

This is CS50.© 2018

Bitmap Headers
Bitmaps also have a header – a few bytes at the beginning of the file
that tell the display program how to interpret the bits in that file. For
the common .bmp Microsoft file extension, we use the struct at right
to specify its header. These fields specify the size of the image in
bytes, its width and height in pixels, and more. Having this information
bundled together ensures that our display program knows exactly
how to format the image.

RGB Triples
The bitmaps we’ve worked with contain three bytes for each pixel in
a color image. Each byte specifies a number between 0 and 255, or, in
hexadecimal, 0x00 to 0xff. These three numbers detail how much red,
green, and blue to put in that pixel. We can make sense of how this
information comes together by thinking about painting, where mixing
different combinations of just a few colors can produce many, many
different shades. In this case, red, green, and blue can be combined to
make the entire rainbow with varying levels of brightness.

Other Image File Formats
Do we need to store all of the information corresponding to every pixel
in our image file? After all, many images feature a lot of repetition and
redundancy (see what we did there?). Is there a way to encode this repe-
tition to create smaller file sizes?

The answer is, typically, yes. Notice the four horizontal repetitions of 0
and 1, respectively, in the example at right. In the file below it, we encod-
ed (pixel value, repeat number) pairs. What we’ve just done here is
compressed the original file, resulting in a new file of smaller size.

There are two main types of file compression: lossy and lossless. In lossy file compression, files, such as JPGs, are
compressed in such a way that data is lost, meaning that the original file cannot be completely recovered. On
the other hand, in lossless compression, which is used with PNGs and GIFs, no data is lost and the original file
can be exactly reconstructed. The compression in the example above falls into this category.

0 0 0 0

1 1 1 1

0 4

1 4

GIF compression

1 1 0 0

1 0 1 1

0 1 0 1

0 1 1 1

0 1 0 1

0 1 1 0

1 0 1 1

1 1 0 0

0 0 1 1

1 1 0 1

1 0 1 0

1 1 1 0

1 0 1 0

0 1 1 0

1 1 0 1

0 0 1 1

 1 typedef struct
 2 {
 3 DWORD biSize;
 4 LONG biWidth;
 5 LONG biHeight;

 (...)

 14 } __attribute__((__packed__))
 15 BITMAPINFOHEADER;

CS50 Images

