
CS50

This is CS50.© 2018

Recursion

main()

recurse(3)

recurse(2)3
*

recurse(1) = 1*2

Key Terms
• recursive solution
• iterative solution
• base case
• recursive case
• call stack
• active frame

Overview
Recursive solutions to problems are typically contrasted with iterative ones. In a
recursive solution, a function (or a set of functions) repeatedly invokes slightly
modified instances of itself, with each subsequent instance tending closer and
closer to a base case. In the meantime, the intermediate calls are all left waiting,
having “passed the buck” to a downstream call to give it the answer it needs.
Recursive procedures, when contrasted with iterative ones, can sometimes lead to
incredibly efficient, elegant, and, some might even say, beautiful solutions.

Recursion versus Iteration

Call Stack Representation
When a recursive function (or any function for this matter) is called, it creates a new frame on the stack. Ev-
ery subsequent function called within main() is created on top of the previous frame. This stack, where all of
our function calls exist, is called the call stack. This means that the function at the top of the stack is the most
recently called function. We call this the active frame. Say we pass in 3 as the input for recurse(), then main()
will call recurse(3), which will call recurse(2), and so on. This process will continue to occur until the base case
is met. Once this happens, that return value trickles down and is plugged back into the function calls left open

in the call stack. In our example, 1 would be plugged into recurse(1), destroy-
ing this frame in the call stack and leaving recurse(2) as the active frame. The
number 2 would be passed into recurse(2) in the same way and so on until re-
curse(3) returned 6 and passed that back to main(). At this point, main() would
be the only function left in the call stack, since all the other calls to recurse()
would have been destroyed after returning a value.

Note that in our sample iterative solution above, there would only be one func-
tion called, iterate(). So in some ways iterative solutions are simpler than
recursive ones. And since iterative solutions can usually solve the same types of
problems as recursive ones, there will almost never be a real world problem that
requires us to use recursion as a means to solve it. Rather, recursion can be used
to make our code more elegant and efficient.

int iterate(input)
{
 int product = 1;
 for(int i = input; i > 0; i--)
 {
 product *= i;
 }
 return product;
}

int recurse(input)
{
 if(input == 1)
 {
 return 1;
 }
 return input * recurse(input - 1);
}

Recursive solutions can often replace clunkier iterative ones.
One great example of this is with programs that calculate
the factorial of a number. Remember that “n factorial,” or n!,
simply represents the product of all integers less than and
including n. So 3! would be six (3 * 2 * 1). Consider the
two approaches on the right for implementing a function to
find the factorial of an integer. The first implementation looks
familiar. This is known as an iterative solution as we are iter-
ating through a loop, substituting in different values for i. In
this solution, we have declared two variables (product and i),
while in the recursive solution, we have not declared any. Also,
note that recurse() is fewer lines shorter than iterate().

Implementation
Recursive solutions to problems are made up of two parts:
the base case and the recursive case. The base case is what
allows us to break out of an infinite loop. Without a base case
our program would continue to run until it no longer had the
space to do so and resulted in a segmentation fault. In our example, the base case is when input == 1. The recur-
sive case is where the function invokes itself. This appears in the last line of recurse(), where recurse is called
again. In this way, recurse repeatedly calls itself until 1 is the value being passed into the function.

